Коллекторные эл двигатели

Однофазные коллекторные двигатели

По принципу действия и конструкции однофазные коллекторные двигатели практически идентичны КМПТ, отличаются тем, что обязательно имеют последовательную систему возбуждения.

Однофазные коллекторные двигатели используются в виде маломощных, до 0,5 кВт с частотой вращения до 10 - 20 тыс. об/мин. Такие двигатели используются и для электрической тяги, например для ж/д в этом случае для улучшения характеристик используется пониженная частота 161/3 Гц.

Однофазный коллекторный двигатель с трансформаторной связью обмоток статора и ротора (репульсионные)

Такой двигатель с последовательно включенными двумя обмотками возбуждения расположенными по продольной и поперечной оси разработан и предложен Аткинсоном.

Ток протекая по обмоткам возбуждения создает переменный магнитный поток который трансформирует в проводниках якоря ЭДС. т.к. щетки замкнуты накоротко то од действием ЭДС протекает ток соответственно. Взаимодействие проводников с током и потоком возбуждения приводит к появлению вращающего момента.

Коллекторные эл двигатели постоянного тока

Арнольдом было предложено вместо двух обмоток использовать одну.

Перемещая щетки относительно геометрической нейтрали можно регулировать частоту вращения. Альфа =0 и90° М = О Мmax при альфа = 65 - 70° частота вращения может регулироваться за счет поворота щеток 0,3 - 1,1 n

Однофазные коллекторные двигатели переменного тока, как правило, изготовляются с последовательным возбуждением. Их схемы и устройство не отличаются в основном от схем и устройства двигателей постоянного тока последовательного возбуждения. Так как при питании двигателя переменным током магнитный поток будет изменяться с частотой напряжения сети, то для уменьшения потерь на вихревые токи магнитная система как статора, так и ротора собирается из листов электротехнической стали. В настоящее время однофазные коллекторные двигатели переменного тока выпускаются на небольшие мощности и применяются в установках, где требуются высокие частоты вращения (3000-30000 об/мин). К числу таких установок относятся ручные инструменты, шлифовальные станки, пылесосы, полотеры и т. д.

Вращающий момент двигателя создается в результате взаимодействия тока якоря I с магнитным потоком Ф . созданным обмоткой возбуждения. Несмотря на то что ток и магнитный поток переменные, результирующий вращающий момент будет всегда направлен в одну и ту же сторону, так как одновременно с изменением направления тока изменяется направление магнитного потока

На рис. показаны кривые тока, магнитного потока и момента однофазного коллекторного двигателя. Ток i, равный току возбуждения, опережает по фазе магнитный поток на угол α из-за наличия магнитных потерь. Как видно из рисунка, момент носит пульсирующий характер. Он пульсирует с двойной частотой тока. Несмотря на это из-за значительной механической инерции частота вращения якоря при данных значениях I и Ф будет практически постоянной и будет определяться средним моментом. Из-за наличия угла сдвига между током и потоком мгновенные значения вращающего момента на протяжении угла а имеют отрицательное значение, что снижает среднее значение момента. У двигателей последовательного возбуждения угол α невелик, поэтому снижение среднего момента будет незначительным. У двигателей параллельного возбуждения из-за большой индуктивности обмотки возбуждения угол сдвига между током возбуждения (потоком) и током якоря будет иметь большое значение, что приведет к сильному снижению среднего момента. По этой причине однофазные коллекторные двигатели переменного тока с параллельным возбуждением не выполняют.

Изменение направления вращения коллекторного двигателя переменного тока осуществляется так же, как и двигателей постоянного тока. Регулирование частоты вращения двигателей производится путем изменения подводимого напряжения, для чего двигатель в сеть включается через трансформатор, у которого можно менять коэффициент трансформации. Механические характеристики однофазного коллекторного двигателя переменного тока имеют тот же характер, что и двигателей постоянного тока последовательного возбуждения.

Однофазные коллекторные двигатели переменного тока имеют значительно худшие условия коммутации, чем двигатели постоянного тока. Связано это с тем, что у них в коммутируемых секциях кроме реактивной ЭДС е n индуктируется трансформаторная ЭДС еТ . Трансформаторная ЭДС возникает вследствие изменения во времени потока возбуждения. Эту ЭДС трудно скомпенсировать с помощью дополнительных полюсов, так как она отстает от тока якоря на угол, примерно равный 90°, и не зависит от частоты вращения.

На рис. показана векторная диаграмма ЭДС, индуктируемых в коммутируемой секции (угол α = 0). Некоторое улучшение коммутации у однофазных коллекторных двигателей достигается шунтированием резистором R обмотки дополнительных полюсов. В этом случае ток в обмотке дополнительного полюса сдвигается по отношению к току якоря и можно так подобрать его фазу, что наводимая потоком дополнительного полюса ЭДС в коммутируемой секции Е K будет равна и противоположна ЭДС Е рез = Е R + Е т . т. е. произойдет полная компенсация ЭДС, индуктируёмых в коммутируемой секции, Однако при данном значении сопротивления R этого можно достичь только для определенных значений тока и частоты вращения. При других значениях тока и частоты вращения полной компенсации происходить не будет. В целом коммутация этих двигателей значительно хуже, чем двигателей постоянного тока, что затрудняет их изготовление на большие мощности, Двигатели небольшой мощности (до 2,4 кВт) работают без дополнительных полюсов.

Устройство коллекторных двигателей — электрических машин

Принцип работы электрических машин нам хорошо знаком еще со школьной скамьи, — это когда к контактным кольцам рамки подключено напряжение, а рамка помещенная в однородном магнитном поле постоянного магнита — начинает равномерно вращаться с определенной угловой скоростью и направление вращения рамки будет зависить от размещения полюсов север, юг постоянного магнита.   То, что электрические машины обладают обратимыми свойствами — тоже известно.   То-есть, если ротору двигателя придать механическое вращение, в обмотках статора будет наводиться ЭДС и мы сможем получить на выходе — концах обмоток статора напряжение.   Отсюда можно сделать вывод, что электрические машины способны преобразовывать механическую энергию в электрическую и наоборот, электрическую энергию в механическую.   Это как-бы изложено для Вас — в обычной, простой и доступной форме.   А теперь ознакомимся конкретно, где именно могут применяться коллекторные двигатели переменного и постоянного тока.

Коллекторные эл двигатели коллекторный двигатель

Применение коллекторных двигателей — переменного тока

Разновидности, типы коллекторных двигателей с питанием от переменного тока электросети применяются в различной бытовой технике:

  • стиральные машины;
  • электроперфораторы;
  • электродрели;
  • наждаки электрические;
  • электрические триммеры;
  • домашние пылесосы;
  • электрические фены

и далее.   Так-же, данный тип двигателей применяется в :

  •  промышленном;
  •  пищевом;
  • строительном

и медицинском оборудовании.

коллекторный электродвигатель переменного тока ДК-90

коллекторный эл.двигатель AEG  UOZ 112 G 63

коллекторный эл.двигатель ДК 90-60-8МС-2И

коллекторный эл.двигатель дрель

Подробное описание по применению коллекторных электродвигателей переменного тока — может занять много времени, а получить первоначальное представление  об их  применении,  считаю для нас —   достаточным.

Применение  коллекторных двигателей — постоянного тока

Применение коллекторных двигателей работающих от постоянного тока, — можно встретить практически везде в нашем быту.   Взять допустим автомобильный стартер, электрическая схема которого представляет из себя  тот-же самый коллекторный двигатель, работающий от постоянного тока.   В дополнение, автомобильный стартер работает как тяговый электродвигатель, чтобы провернуть маховик двигателя автомобиля.   Так-же, коллекторные двигатели постоянного тока применяются в видео и аудио  технике,  многая аппаратура из которых уже вышла из моды.

стартер автомобиля

коллекторный эл.двигатель постоянного тока КПА-561

коллекторный эл.двигатель постоянного тока 36 В 500W для велосипеда

коллекторный эл.двигатель постоянного тока СЛ-221

Кто-то из нас разбирал в свое время электрические игрушки работающие от батареек, там установлены те-же самые коллекторные мини двигатели, работающие от постоянного тока.

коллекторный эл.двигатель постоянного тока 27 Т  SATURN

Многие  пользовались или же пользуются электробритвой работающей от батареек, — в этом электроприборе тоже установлен  коллекторный двигатель постоянного тока.   Если кто-то из  Вас  разбирал электрический коллекторный мини двигатель, то могут со мной согласиться, что причиной их неисправностей является либо износ графитовых щеток либо износ втулок — в которых крепится  вал ротора, а износ втулок приводит к радиальному биению ротора, то-есть, нарушается зазор между сталью статора и ротора двигателя.

Устройство машины постоянного тока

Электрическая машина постоянного тока, как наглядно видно в схематическом изображении рис.1, состоит из следующих деталей:

  1. коллектор;
  2. щетки;
  3. сердечник якоря;
  4. главный полюс;
  5. катушка обмотки возбуждения;
  6. станина;
  7. подшипниковый щит;
  8. вентилятор;
  9. обмотка якоря;
  10. вал.

Здесь необходимо запомнить, что для электрических машин постоянного и переменного тока имеются различия в таких названиях  —  как ротор и якорь.   Якорем следует называть вращающуюся  часть  генератора, а ротор — это вращающаяся часть электродвигателя.

Теги: 

Рекомендуем также прочитать

Раздатка Х3 Авто: 325xi touring 2006
Асинхронный электродвигатель
Устройство и подключение однофазных электродвигателей 220В Содержание