Регулируемый асинхронный двигатель

Асинхронный регулируемый двигатель

Вледельцы патента:

Обухов Виталий Арсеньевич

Использование: в регулируемых электроприводах общепромышленного применения. Сущность: регулируемый асинхронный двигатель содержит якорь, первый и второй дополнительные магнитопроводы, между которыми установлена немагнитная вставка. Ротор содержит основной магнитопровод, обмотку, первый и второй дополнительные магнитопроводы, установленные на валу. Дополнительная обмотка соединена с обмоткой. В дополнительном магнитопроводе установлено два ферромагнитных полых цилиндра на подшипниковых опорах, причем второй полый цилиндр разделен немагнитным кольцом. На внутренней поверхности указанных магнитопроводов выполнены пазы, заполненные высокопроводящими стержнями с торцовыми кольцами, которые снабжены скользящими контактами с торцовыми и внутренними дисками. Между дисками установлена униполярная обмотка возбуждения. Ферромагнитные цилиндры разделены между стержнями на равные части немагнитными вставками. Диски первого цилиндра электрически подключены к дискам второго ферромагнитного цилиндра. Вторая униполярная обмотка возбуждения установлена на дополнительном магнитопроводе. 4 з.п. ф-лы, 3 ил.

Изобретение относится к регулируемым асинхронным двигателям и может быть использовано в качестве регулируемого электропривода общепромышленного назна- чения.

Известен регулируемый асинхронный двигатель с магнитными шунтами [1]. Недостатками таких двигателей являются сравнительно узкий диапазон регулирования, большие потери скольжения при регулировании. Вышеуказанный двигатель принят за аналог.

Техническое решение, наиболее близко относящееся к предлагаемому изобретению, описано в [2] и принято за прототип.

Асинхронный двигатель содержит статор с якорем и корпусом, ротор с основным магнитопроводом, обмоткой и дополнительным магнитопроводом, установленным рядом с основным магнитопроводом, закрепленным на валу посредством втулки.

Прототипу присущи следующие недостатки: высокие потери скольжения при регулировании частоты вращения; узкий диапазон регулирования; снижение коэффициента мощности при регулировании частоты вращения.

Цель изобретения - улучшение энергетических характеристик, увеличение диапазона регулирования.

Цель достигается тем, что двигатель снабжен дополнительной обмоткой на роторе, дополнительным магнитопроводом статора и вторым дополнительным магнитопроводом на роторе, двумя ферромагнитными полыми цилиндрами с короткозамкнутыми обмотками, установленными в дополнительном магнитопроводе статора с возможностью свободного вращения, двумя парами торцовых и внутренних дисков, установленных на статоре, скользящими контактами, немагнитными вставками, при этом на внутренних поверхностях цилиндров выполнены равномерно распределенные по окружности пазы, заполненные высокопроводящими стержнями, замкнутыми по торцам высокопроводящими кольцами, на которых размещены скользящие контакты, установленные с возможностью контакта с торцовыми и внутренними дисками, немагнитные вставки размещены в высокопроводящих кольцах между стержнями, причем число немагнитных вставок в первом ферромагнитном цилиндре, охватывающем дополнительный магнитопровод ротора, равно числу пар полюсов его обмотки, и во втором дополнительном магнитопроводе ротора выполнены пазы, число которых равно удвоенному числу немагнитных вставок второго ферромагнитного цилиндра, при этом второй дополнительный магнитопровод ротора размещен внутри второго ферромагнитного цилиндра, торцовые и внутренние диски двух ферромагнитных цилиндров электрически соединены между собой, а дополнительная обмотка ротора подключена к обмотке ротора с обратным следованием фаз.

Кроме того, снабжен кольцевой немагнитной вставкой, второй униполярной обмоткой возбуждения, двумя полюсами второго дополнительного магнитопровода и немагнитным кольцом, разделяющим второй ферромагнитный цилиндр в поперечном сечении на расстоянии, примерно равном длине первого ферромагнитного цилиндра, кольцевая немагнитная вставка установлена в этом же сечении на торце второго дополнительного магнитопровода с второй униполярной обмоткой возбуждения, один полюс примыкает к немагнитной кольцевой вставке, а второй полюс размещен с торца второго дополнительного магнитопровода ротора. Кроме того, снабжен постоянными магнитами, установленными в пазах второго дополнительного магнитопровода ротора. Кроме того, обмотки основного и дополнительного магнитопроводов ротора выполнены из стержней, размещенных одновременно в пазах основного и дополнительного магнитопроводов, замкнутых по торцам короткозамыкающими кольцами. Кроме того, число пар полюсов дополнительной обмотки ротора меньше числа пар полюсов обмотки основного магнитопровода ротора.

Отличительными признаками предлагаемого изобретения являются: размещение дополнительной обмотки в дополнительном магнитопроводе и подключение ее к обмотке ротора с обратным следованием фаз; дополнительный магнитопровод на статоре с ферромагнитными цилиндрами с возможностью свободного вращения; высокопроводящие стержни и немагнитные вставки в ферромагнитные цилиндры; второй дополнительный магнитопровод с ферромагнитными цилиндрами; установка во втором ферромагнитном цилиндре немагнитного кольца и кольцевой немагнитной вставки в дополнительном магнитопроводе; заполнение пазов второго дополнительного магнитопровода ротора постоянными магнитами; размещение общей короткозамкнутой обмотки на основном и дополнительном магнитопроводах ротора; установка и закрепление второго ферромагнитного цилиндра на втором дополнительном магнитопроводе ротора; число пар полюсов дополнительной обмотки меньше числа пар полюсов основного магнитопровода ротора.

Предложение соответствует критерию "существенные отличия", так как из известного перечня информации, установленного нормативным документом (п.127 ЭЗ-1-74), технические решения с признаками, подобными заявленным, не обнаружены.

На фиг.1 изображено устройство регулируемого асинхронного электродвигателя, продольное сечение; на фиг.2 - сечение А-А на фиг.1; на фиг.3 - сечение Б-Б на фиг.1.

Регулируемый асинхронный двигатель включает статор с якорем 1 и корпусом 2, дополнительным магнитопроводом 3, вторым дополнительным магнитопроводом 4 с немагнитной вставкой 5, ротор с основным магнитопроводом 6, обмоткой 7, дополнительным магнитопроводом 8, вторым дополнительным магнитопроводом 9, непосредственно примыкающим к магнитопроводу 8, установленные на валу 10.

В дополнительном магнитопроводе 8 размещена дополнительная обмотка 11, подключенная к обмотке ротора 7. В дополнительном магнитопроводе 3 установлено два полых ферромагнитных цилиндра 12 и 13 на подшипниковых опорах 14. При этом второй ферромагнитный цилиндр 13 разделен в поперечном сечении немагнитным кольцом 15, соотносящимся с немагнитной вставкой 5 дополнительного магнитопровода статора, и выступает за немагнитную вставку 5. На внутренних поверхностях ферромагнитных цилиндров 12 и 13 размещены равномерно распределенные по окружности пазы, заполненные высокопроводящими стержнями 16, замкнутыми по торцам высокопроводящими кольцами 17, снабженные скользящими контактами с торцовыми 18 и внутренними 19 дисками. Между внутренними дисками 19 установлена униполярная обмотка 20 возбуждения. Ферромагнитные цилиндры 12 и 13 разделены между стержнями 16 на равные части немагнитными вставками 21. В первом ферромагнитном цилиндре 12, охватывающем дополнительный магнитопровод 8 ротора, число немагнитных вставок 21 равно числу пар полюсов дополнительной обмотки 11. На втором ферромагнитном цилиндре 13 число немагнитных вставок 21 равно половине числа пазов 22, выполненных во втором дополнительном магнитопроводе 9 ротора, размещенного внутри этого цилиндра.

Торцовые 18 и внутренние 19 диски первого ферромагнитного цилиндра электрически подключены к аналогичным дискам второго ферромагнитного цилиндра. На втором дополнительном магнитопроводе 4 установлена вторая униполярная обмотка 23 возбуждения, при этом один его полюс замыкается до немагнитной вставки 5 на торец дополнительного магнитопровода 3, тогда как второй полюс размещен с торца второго дополнительного магнитопровода 9 ротора. Пазы 22 второго дополнительного магнитопровода 9 могут быть заполнены постоянными магнитами. Обмотки 7 и 11 ротора могут выполняться по типу короткозамкнутой клетки, при этом стержни обмотки 7 могут быть размещены на основном 6 и дополнительном 8 магнитопроводах и выполнять функции двух обмоток 7 и 11, либо по типу фазных обмоток. Обмотки 7 и 11 ротора могут быть подключены друг на друга с встречным либо согласным направлением следования фаз.

При наличии второго дополнительного магнитопровода 4 и второй униполярной обмотки 23 возбуждения второй ферромагнитный цилиндр 13 может быть закреплен на втором дополнительном магнитопроводе 9 ротора, при этом немагнитное кольцо 15 разделяет также этот магнитопровод.

Устройство работает следующим образом.

При подаче напряжения в якорь 1 в обмотке 7 ротора наведется ЭДС скольжения. Поскольку к обмотке 7 подключена (с обратным следованием фаз) обмотка 11 дополнительного магнитопровода 8, то величина пускового тока будет определяться суммарным сопротивлением двух последовательно соединенных асинхронных машин. При этом пусковой момент может оказаться недостаточным для преодоления момента трогания вала 10 (с учетом момента сопротивления приводного механизма). Однако первый ферромагнитный цилиндр 12 практически не имеет момента сопротивления, в связи с чем под действием вращающегося электромагнитного поля, возбуждаемого пусковым током дополнительной обмотки 11, он придет во вращение с частотой, определяемой числом пар полюсов обмотки 11 и частотой скольжения. При этом направление вращения ферромагнитного цилиндра 12 - обратное по отношению к требуемому направлению вращения вала 10 асинхронного двигателя.

С подачей возбуждения в униполярную обмотку 20 в ферромагнитном цилиндре 12 наведется униполярная ЭДС, под действием которой по стержням 16 ферромагнитных цилиндров 12 и 13 потечет постоянный ток, при этом каждый из стержней 16 создает пару полюсов. Первый ферромагнитный цилиндр 12 войдет в синхронизм с полем обмотки 11 дополнительного магнитопровода 8 и будет работать в режиме синхронного двигателя, одновременно генерируя униполярную ЭДС. При этом в обмотку 7 основного магнитопровода 6 последовательно подключенной оказывается синхронная машина, полное сопротивление которой зависит от ее нагрузки, то есть от величины генерируемой мощности постоянного тока. Второй ферромагнитный цилиндр 13 при взаимодействии униполярного тока с униполярным магнитным потоком будет вращаться в требуемом направлении вращения вала, при этом передается вращающий момент на вал 10 через второй дополнительный магнитопровод 9 (аналогично муфте постоянного тока). Поскольку направление вращения электромагнитного поля дополнительной обмотки 11 обратное по отношению к полю обмотки 7, то оно будет создавать на валу 10 вращающий момент, действующий согласно с обмоткой 7. В таком случае на вал 10 будет действовать результирующий момент, представляющий сумму трех вышеуказанных вращающих моментов.

При увеличении тока в униполярной обмотке 20 возбуждения возрастет мощность постоянного тока, генерируемая первым ферромагнитным цилиндром 12, одновременно уменьшится полное сопротивление дополнительной обмотки 11, а следовательно, возрастет ток в обмотках 7 и 11 и увеличится вращающий момент обмоток основного магнитопровода 6, дополнительного магнитопровода 8, а также увеличится вращающий момент, передаваемый на вал 10 вторым ферромагнитным цилиндром 13, питаемым от первого ферромагнитного цилиндра 12. Результирующий вращающий момент асинхронного двигателя превзойдет момент страгивания и его ротор придет во вращение до значения частоты, при которой вращающий момент двигателя и момент сопротивления на его валу сравняются.

Для увеличения частоты вращения вала асинхронного двигателя необходимо увеличить ток возбуждения в униполярной обмотке 20, что приведет к одновременному росту момента на ферромагнитных цилиндрах 12 и 13 и основном магнитопроводе 6.

Таким образом, при неизменных параметрах сети регулируется частота вращения асинхронного электродвигателя.

Для исключения потерь скольжения при регулировании частоты вращения асинхронного электродвигателя частота вращения ферромагнитного цилиндра 13 должна быть равна частоте вращения вала 10, а это возможно лишь в узком диапазоне из-за некоторого отличия от пропорциональности изменения униполярного магнитного потока и униполярного тока якоря. При расширении диапазона регулирования на поверхности второго дополнительного магнитопровода 9 ротора будут выделяться потери скольжения. Расширить диапазон регулирования асинхронного двигателя с исключением потерь скольжения возможно регулированием униполярного магнитного потока во втором ферромагнитном цилиндре 13 путем изменения тока во второй униполярной обмотке 23 возбуждения. Это позволяет регулировать величину магнитного потока через второй ферромагнитный цилиндр 13 практически от нулевого до максимального значения при неизменном значении магнитного потока через первый ферромагнитный цилиндр 12. Это позволяет поддерживать значение частоты вращения второго ферромагнитного цилиндра 13, равное частоте вращения вала 10.

Для исключения скольжения при передаче высоких вращающих моментов от второго ферромагнитного цилиндра 13 на вал 10 и повышения использования активных материалов пазы 22 второго дополнительного магнитопровода 9 ротора могут быть заполнены постоянными магнитами. При наличии второй униполярной обмотки 23 возбуждения становится возможным регулирование частоты вращения асинхронного двигателя и при согласном включении обмоток 7 и 11. В таком случае стержни короткозамкнутой обмотки 7 могут быть удлинены и размещаться одновременно на основном 6 и дополнительном 8 магнитопроводах ротора и замыкаться по торцам короткозамкнутыми кольцами. Это позволяет уменьшить длину лобовых частей обмоток, а следовательно, потери в меди и улучшить энергетические характеристики.

Для улучшения энергетических характеристик (коэффициента мощности) число пар полюсов дополнительной обмотки 11 может выбираться меньше числа пар полюсов асинхронного электродвигателя.

Формула изобретения

1. АСИНХРОННЫЙ РЕГУЛИРУЕМЫЙ ДВИГАТЕЛЬ, содержащий статор с якорем и корпусом, ротор с основным и дополнительным магнитопроводами и обмоткой, отличающийся тем, что, с целью улучщения энергетических характеристик, увеличения диапазона регулирования, он снабжен дополнительной обмоткой на роторе, дополнительным магнитопроводом статора и вторым дополнительным магнитопроводом на роторе, двумя ферромагнитными полыми цилиндрами с короткозамкнутыми обмотками, установленными в дополнительном магнитопроводе статора с возможностью свободного вращения, двумя парами торцевых и внутренних дисков, установленных на статоре, скользящими контактами, немагнитными вставками, при этом на внутренних поверхностях цилиндров выполнены равномерно распределенные по окружности пазы, заполненные высокопроводящими стержнями, замкнутыми по торцам высокопроводящими кольцами, на которых размещены скользящие контакты, установленные с возможностью контакта с торцевыми и внутренними дисками, немагнитные вставки размещены в высокопроводящих кольцах между стержнями, причем число немагнитных вставок в первом ферромагнитном цилиндре, охватывающем дополнительный магнитопровод ротора, равно числу пар полюсов его обмотки, и во втором дополнительном магнитопроводе ротора выполнены пазы, число которых равно удвоенному числу немагнитных вставок второго ферромагнитного цилиндра, при этом второй дополнительный магнитопроводод ротора размещен внутри второго ферромагнитного цилиндра, торцевые и внутренние диски двух ферромагнитных цилиндров электрически соединены между собой, а дополнительная обмотка ротора подключена к обмотке ротора с обратным следованием фаз.

2. Двигатель по п.1, отличающийся тем, что он снабжен кольцевой немагнитной вставкой, второй униполярной обмоткой возбуждения, двумя полюсами второго дополнительного магнитопровода и немагнитным кольцом, разделяющим второй ферромагнитный цилиндр в поперечном сечении на расстоянии, примерно равном длине первого ферромагнитного цилиндра, кольцевая немагнитная вставка установлена в этом же сечении на торце второго дополнительного магнитопровода с второй униполярной обмоткой возбуждения, один полюс примыкает к немагнитной кольцевой вставке, а другой полюс размещен с торца второго дополнительного магнитопровода ротора.

3. Двигатель по пп.1 и 2, отличающийся тем, что снабжен постоянными магнитами, установленными в пазах второго дополнительного магнитопровода ротора.

4. Двигатель по пп.1 и 2, отличающийся тем, что обмотки основного и дополнительного магнитопроводов ротора выполнены из стержней, размещенных одновременно в пазах основного и дополнительного магнитопроводов, замкнутых по торцам короткозамыкающими кольцами.

5. Двигатель по пп.1 и 2, отличающийся тем, что число пар полюсов дополнительной обмотки ротора меньше числа пар полюсов обмотки основного магнитопровода ротора.

Регулирование скорости асинхронного двигателя

Наиболее распространены следующие способы регулирования скорости асинхронного двигателя. изменение дополнительного сопротивления цепи ротора, изменение напряжения, подводимого к обмотке статора, двигателя изменение частоты питающего напряжения, а также переключение числа пар полюсов.

Регулирование частоты вращения асинхронного двигателя путем введения резисторов в цепь ротора

Введение резисторов в цепь ротора приводит к увеличению потерь мощности и снижению частоты вращения ротора двигателя за счет увеличения скольжения, поскольку n = n о (1 - s).

Регулируемый асинхронный двигатель двигатель

Из рис. 1 следует, что при увеличении сопротивления в цепи ротора при том же моменте частота вращения вала двигателя уменьшается.

Жесткость механических характеристик значительно снижается с уменьшением частоты вращения, что ограничивает диапазон регулирования до (2 - 3). 1. Недостатком этого способа являются значительные потери энергии, которые пропорциональны скольжению. Такое регулирование возможно только для двигателя с фазным ротором.

Регулирование частоты вращения асинхронного двигателя изменением напряжения на статоре

Изменение напряжения, подводимого к обмотке статора асинхронного двигателя. позволяет регулировать скорость с помощью относительно простых технических средств и схем управления. Для этого между сетью переменного тока со стандартным напряжением U 1ном и статором электродвигателя включается регулятор напряжения.

При регулировании частоты вращения асинхронного двигателя изменением напряжения, подводимого к обмотке статора, критический момент М кр асинхронного двигателя изменяется пропорционально квадрату подводимого к двигателю напряжения U рет (рис. 3 ), а скольжение от U рег не зависит.

Рис. 1. Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора

Рис. 2. Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре

Рис. 3. Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора

Если момент сопротивления рабочей машины больше пускового момента электродвигателя (Мс > Мпуск), то двигатель не будет вращаться, поэтому необходимо запустить его при номинальном напряжении Uном или на холостом ходу.

Регулировать частоту вращения короткозамкнутых асинхронных двигателей таким способом можно только при вентиляторном характере нагрузки. Кроме того, должны использоваться специальные электродвигатели с повышенным скольжением. Диапазон регулирования небольшой, до n кр.

Для изменения напряжения применяют трехфазные автотрансформаторы и тиристорные регуляторы напряжения.

Рис. 4. Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения - асинхронный двигатель (ТРН - АД)

Замкнутая схема управления асинхронным двигателем. выполненным по схеме тиристорный регулятор напряжения - электродвигатель позволяет регулировать скорость асинхронного двигателя с повышенным скольжением (такие двигатели применяются в вентиляционных установках).

Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения

Так как частота вращения магнитного поля статора n о = 60 f /р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту питающего напряжения, можно в соответствии с выражением при неизменном числе пар полюсов р изменять угловую скорость n о магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Для получения высоких энергетических показателей асинхронных двигателей (коэффициентов мощности, полезного действия, перегрузочной способности) необходимо одновременно с частотой изменять и подводимое напряжение. Закон изменения напряжения зависит от характера момента нагрузки Мс. При постоянном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.

Схема частотного электропривода приведена на рис. 5, а механические характеристики АД при частотном регулировании — на рис. 6.

Рис. 5. Схема частотного электропривода

Рис. 6. Механические характеристики асинхронного двигателя при частотном регулировании

С уменьшением частоты f критический момент несколько уменьшается в области малых частот вращения. Это объясняется возрастанием влияния активного сопротивления обмотки статора при одновременном снижении частоты и напряжения.

Частотное регулирование скорости асинхронного двигателя позволяет изменять частоту вращения в диапазоне (20 - 30). 1. Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности при таком регулировании невелики, поскольку минимальны потери скольжения.

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

Силовой трехфазный импульсный инвертор содержит шесть транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями. Регулирование выходной частоты I вых и выходного напряжения осуществляется за счет высокочастотной широтно-импульсной модуляции.

Регулирование частоты вращения асинхронного двигателя переключение числа пар полюсов

Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.

Из выражения n о = 60 f /р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения n о магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.

Существует два способа изменения числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза.

Рис. 7. Схемы переключения обмоток асинхронного двигателя: а - с одинарной звезды на двойную; б - с треугольника на двойную звезду

Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором. Выпускаются двухскоростные двигатели с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.

Использованы материалы книги Дайнеко В.А. Ковалинский А.И. Электрооборудование сельскохозяйственных предприятий.

Регулирование скорости асинхронного двигателя

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей .

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.

Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

Этот способ регулирования скорости применим в двигателях с фазным ротором. При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потери в цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому, механическая характеристика двигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.

Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости с помощью изменения частоты питания

При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.

Регулируемый асинхронный двигатель асинхронного двигателя

При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U1. Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.

Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U1 необходимо производить пропорционально квадратному корню изменения частоты f1.

При регулировании установок с вентиляторной характеристикой. необходимо изменять подводимое напряжение U1 пропорционально квадрату изменения частоты f1.

Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.

Регулирование скорости АД изменением числа пар полюсов

Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.

В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.

Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда - звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.

Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.

Теги: 

Рекомендуем также прочитать

СЕРВОУСИЛИТЕЛЬ KOLLMORGEN S700
«Склад и Техника» №5/2007 Синхронный, асинхронный – какая разница?!
Нестандартные Мотор-редукторы от 25 000 руб. Производство: "Тераинвест"
Реверс редуктор для лодочных моторов Impulse